Discovery of the Neutron (1932)
The story begins in 1932, with the discovery of the neutron by Sir James Chadwick, an English physicist.
Until 1932, the atom was known to consist of a positively charged nucleus surrounded by enough negatively charged electrons to make the atom electrically neutral. Most of the atom was empty space, with its mass concentrated in a tiny nucleus. The nucleus was thought to contain both protons and electrons because the proton (otherwise known as the hydrogen ion, H+) was the lightest known nucleus and because electrons were emitted by the nucleus in beta decay. In addition to the beta particles, certain radioactive nuclei emitted positively charged alpha particles and neutral gamma radiation. The symbols for these emissions are b - or –1e0, a 2+ or 24He2+, and 00g .
Twelve years earlier, Lord Ernest Rutherford, a pioneer in atomic structure, had postulated the existence of a neutral particle, with the approximate mass of a proton, that could result from the capture of an electron by a proton. This postulation stimulated a search for the particle. However, its electrical neutrality complicated the search because almost all experimental techniques of this period measured charged particles.
In 1928, a German physicist, Walter Bothe, and his student, Herbert Becker, took the initial step in the search. They bombarded beryllium with alpha particles emitted from polonium and found that it gave off a penetrating, electrically neutral radiation, which they interpreted to be high-energy gamma photons.
In 1932, Irene Joliot-Curie, one of Madame Curie’s daughters, and her husband, Frederic Joliot-Curie, decided to use their strong polonium alpha source to further investigate Bothe’s penetrating radiation. They found that this radiation ejected protons from a paraffin target. This discovery was amazing because photons have no mass. However, the Joliot-Curies interpreted the results as the action of photons on the hydrogen atoms in paraffin. They used the analogy of the Compton Effect, in which photons impinging on a metal surface eject electrons. The trouble was that the electron was 1,836 times lighter than the proton and, therefore, recoiled much more easily than the heavier proton after a collision with a gamma photon. We now know that gamma photons do not have enough energy to eject protons from paraffin.
Taken from Wikipedia
1 Comments:
Wah saya baru tahu, terima kasih informasinya.
Post a Comment
Subscribe to Post Comments [Atom]
<< Home